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An Improved Genetic Algorithm for Generation
Expansion Planning

Jong-Bae Park, Young-Moon Park, Jong-Ryul Won, and Kwang Y. Lee

Abstract—This paper presents a development of an improved Pontryagin’s maximum principle whose solution also lies in a
genetic algorithm (IGA) and its application to a least-cost genera- continuous space. Although the above-mentioned mathematical
tion expansion planning (GEP) problem. Least-cost GEP problem programming methods have their own advantages, they possess
is concerned with a highly constrained nonlinear dynamic op- . . !
timization problem that can only be fully solved by complete one or both OT the following d.ra.lwback.s In Splvmg a.GEP
enumeration, a process which is computationally impossible in Problem. That is, they treat decision variables in a continuous
a real-world GEP problem. In this paper, an improved genetic space. And there is no guarantee to get the global optimum
algorithm incorporating a stochastic crossover technique and since the problem is not mathematically convex. Dynamic
an artificial initial population scheme is developed to provide programming (DP) based framework is one of the most widely

a faster search mechanism. The main advantage of the IGA . .
approach is that the “curse of dimensionality” and a local optimal used algorithms in GEP [1]-[3], [7], [8]. However, so-called

trap inherent in mathematical programming methods can be “the curse of dimensionality” has interrupted direct application
simultaneously overcome. The IGA approach is applied to two test of the conventional full DP in practical GEP problems. For
systems, one with 15 existing power plants, 5 types of candidatethis reason, WASP [1] and EGEAS [2] use a heuristic tun-
plants and a 14-year planning period, and the other, a practical nejing technique in the DP optimization routine where users
long-term system with a 24-year planning period. . . . .
prespecify states and successively modify tunnels to arrive at
_Index Terms—Generation expansion planning, genetic algo- 3 |ocal optimum. David and Zhao developed a heuristic-based
rithm, global optimization, improved genetic algorithm. DP [7] and applied the fuzzy set theory [8] to reduce the
number of states. Recently, Fukuyama and Chiang [9] and Park
|. INTRODUCTION et al.[10] applied genetic algorithm (GA) to solve sample GEP

. . . roblems, and showed promising results. However, an efficient
ENERATION expansion planning (GEP) is one of th‘%)nethod for a practical GEP problem that can overcome a local

most important decision-making activities in electric util-__. . . . )
. X ) L timal trap and the dimensionality problem simultaneously
ities. Least-cost GEP is to determine the minimum-cost capac;
" ) . s not been developed yet.

addition plan (i.e., the type and number of candidate plants) tha . . .

. . C . A is a search algorithm based on the hypothesis of nat-
meets forecasted demand within a prespecified reliability crite- . :
; : . ural selections and natural genetics [11]. Recently, a global op-
rion over a planning horizon.

A least-cost GEP problem is a highly constrained nonline%{mlzajuon technique using GA has been successful_ly a_pphed
. . AP 0 various areas of power system such as economic dispatch
discrete dynamic optimization problem that can only be full

solved by complete enumeration in its nature [1]-[3]. Therefor] 12], [13], unit commitment [14], [15], reactive power planning

. L . : [16]-[18], and power plant control [19], [20]. GA-based ap-
every possible combmr_;mon of candidate qptlons over a_plannl fbaches for least-cost GEP have several advantages. Naturally,
thootr;]ZeOgonr:qusjtzzoe:;rg;nelgstizr?ier: :‘fegﬁsvn;ﬁgpéagﬁw?ﬂ;}a Sey can not only treat the discrete variables but also overcome

To solvep this com Iiliated roblem. a number pof salie.rgt[]e dimensionality problem. In addition, they have the capability
P P ' to Fearch for the global optimum or quasioptimums within a rea-

methods have been successfully applied during the Pa3hable computation time. However, there exist some structural

decades. Masse and Gilbrat [4] applied a linear programmigghplems in the conventional GA, such as premature conver-
approach that necessitates the linear approximation of an obj%c- :

tive function and constraints. Bloom [5] applied a mathematicgﬁnCe and duplications among strings in a population as gener-

programming technique using a decomposition method anqon progresses [11].
solved it in a continuous space. Pagk al. [6] applied the n this paper, an improved genetic algorithm (IGA), which

can overcome the aforementioned problems of the conventional
GA to some extents, is developed. The proposed IGA incorpo-
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The results of the IGA are compared with those of the conven- f2(X,): discounted fuel and O&M costs [$] associated
tional simple genetic algorithm, the full DP, and the tunnel-con- with capacity.X;, in yeart,
strained DP employed in WASP. F2(h): discounted salvage value [$] associated with
capacity additiorlV; in yeart.
Il. FORMULATION OF THE LEAST-COST GEP FROBLEM The objective function is the sum of tripartite discounted costs

Mathematically, solving a least-cost GEP problem is equivgyer a planning horizon. It is composed of discounted invest-
' ent costs, expected fuel and O&M costs and salvage value.

lent to finding a set of optimal decision vectors over a planni der i " ts with | lifeti th lanni
horizon that minimizes an objective function under several co o consider investments with longer liretimes than a planning

straints. The GEP problem to be considered is formulated %rizon, the linear depreciation option is utilized [1]. In this
follows [6]: paper, five types of constraints are considered. Equation (2) im-

plies state equation for dynamic planning problem [6]. Equa-
T tions (3) and (4) are related with the LOLP reliability criteria
Min Z { FHU) + (FH(X) — fé":(UT)} (1) and the reserve margin bands, respectively. The capacity mixes
Vo Uri by fuel types are considered in (5). Plant types give another
physical constraint in (6), which reflects the yearly construction
capabilities.
st. X,=X,.,4U, (t=1,---,7) ) Although the state vectotX;, and the decision vectot/;,
have dimensions of MW, we can easily convert those into vec-
tors which have information on the number of units in each plant
type. This mapping strategy is very useful for GA implementa-
LOLP(X,) <e (t=1,---,T) (3) tion of a GEP problem such as encoding and treatment of in-
equality (6), and illustrated in the following (1) equations:

r ’ ’ I AT
Xt:(xi""axi\)T_)Xt:(xtlv"'axtA)T (7)

R<RX)<R (t=1,---,T) 4) U=t uN) S U =@t u)E (8)

; . . N: number of plant types including both existing and can-
j i J -1 ... j=1. .-
M; < Z <My (t=1, , Tandj =1, ) didate plants,

e (5) Xt': cumulative number of units by plant types in year
Ut': addition number of units by plant types in year
a:,Z ith plant type’s cumulative number of units in year
0<U, <U;, (t=1,---,7) (6) uﬁ ith plant type’s addition number of units in year
where . . _ l1l. 1 MPROVED GA FOR THELEAST-COST GEP
7 number of periods (years) in a planning
horizon, A. Overview of Genetic Algorithm
J: number of fuel types, Basically, genetic algorithm is a search mechanism based on
Q;: index set forjth fuel type plant, the hypothesis of natural selection [11]. GA is an artificial opti-
Xy cumulative capacity [MW] vector of plant mization scheme that emulates the hypothetical adaptive nature
, types in yeat, of natural genetics. GA provides solutions by generating a set of
y cumulative capacity [MW] ofith plant type chromosomes referred to as a generation. Each string (chromo-
in yeart, some) has its own fitness measure that reflects how well a crea-
U capacity addition [MW] vector by plant typesture can survive under surrounding environments. The new gen-
L in yeart, eration of strings is provided through three major genetic oper-
Uy maximum construction capacity [MW] vector ations—reproduction, crossover and mutation, which provide a
: by plant types in yeat, powerful global search mechanism. Reproduction is a process in
u: capacity addition [MW] ofith plantin yeat,  which individual strings are copied into a mating pool according
LOLP(X;): loss of load probability (LOLP) withX;, in  to their fitness values. Crossover, the most important genetic op-
yeart, erator, is a structured recombination operation. In the classical
R(Xy): reserve margin with\;, in yeart, one-point crossover, a random position in a string is chosen and
el reliability criterion expressed in LOLP, all characters to the right of this position are swapped. Mutation,
R R upper and lower bounds of reserve margin, the secondary operator in GA, is an occasional random alter-
M}, M} upper and lower bounds gth fuel type in ation of the value of a string position. Variations of the simple
o yeart, GA for power system applications can be found in the Refer-
fHUy): discounted construction costs [$] associateghces [9], [10], [12]-[20]. The improvements on the conven-

with capacity additior/; in yeart, tional GA will be described in the subsequent sections.
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Candidate Type D. Creation of an Artificial Initial Population
n Itis important to create an initial population of strings spread
year 1| ...| yeart|yeart+| ...| year T out throughout the whole solution space, especially in a large-
scale problem. One alternative method could be to increase the
} population size, which yields a high computational burden. This
Addition no. of Addition no. of paper suggests a new artificial initial population (AIP) scheme,
typenint (u'n) typenint (u'",) which also takes the random creation scheme of the conven-

tional GA into account. The procedures are illustrated in the fol-
| | ] lowing and in Table I:

Step 1. Generate all possible binary seeds of each planttype

u.n']{)}mary u,,m%mmy; considering (6). For e.xample, ith plant type has
coding | coding an upper limit of 3 units per year, then generate 4
possible binary seeds (i.e., 00,10, 10, 11).
Fig. 1. A substring structure. Step 2. Find the least common multiple (LCMy). from the

numbers of the binary seeds of all types, and/ill
binary seeds in a look-up table for all plant types

B. String Structure and planning years. For example, if three plant types

Since it is convenient to use integer values for GA imple- have upper limits of 3, 3and 5 units per year, respec-
mentation of a GEP problem, the reordered structure of (8) by tively, then the numbers of binary seeds are 4, 4, and
plant types covering a planning horizon is used for encoding of 6, andm becomes 12.

a stnng as shown in (9). Here, each element of a string [i.e.,Step 3. Select an integer within [kp] at random for each
U™ = (u, ug,-, ug) forn = 1, ---, N] corresponds to a element.,” of a string in (9). Fill the string with the
substring and its structure is depicted in Fig. 1. corresponding binary digits, and delete it from the
look-up table. Repeat untih different strings are
generated.
U = (u’ll, Ugby o Uy - ) g U e Step 4. Check the constraints of (3)-(5). If a string satis-
) ) T fies these constraints for all years, then it becomes
™, ug, - uTA) a member of an initial population. Otherwise, the
., Ny T only parts of the string that violate the constraints
= (U Lo, U N) ) ) in yeart are generated at random until they satisfy

the constraints. Go to stepr3times forn - m less
than P, whereP is the number of strings in a pop-
C. Fitness Function ulation andn is an arbitrary positive integer.
Step 5. The remaining”—n-m strings are created using uni-
form random variables with binary numb§s, 1}.
Go to step 4 to check the constraints and regenerate
them if necessary. This process is repeated until all
strings, which satisfy the constraints, are generated.
o This AIP is based on both artificial and random selection
f= 1 (10) : ; . o
+.J schemes, which allows all possible string structures can be in
cluded in an initial population.

The objective function or cost of a candidate plan is calcu-
lated through the probabilistic production costing and the direct
investment costs calculation [1], [2]. The fitness value of a string
can be evaluated using the following equation [11], [19]:

wherec is constant and is objective function of (1).
However, this simple mapping occasionally brings aboutEs\ Stochastic Crossover, Elitism, and Mutation
premature convergence and duplications among strings in a pop- _
ulation, since strings with higher fitness values dominate the oc-M0st of GA works are based on the Goldberg's simple
cupation of a roulette wheel. genetic algorithm (SGA) framework [11]. This paper proposes
To ameliorate these problems, the following modified fitneg¥o different schemes for genetic operation: a stochastic
function, which normalizes the fitness value of strings into re&fossover technique and the application of elitism. The sto-

numbers within [0, 1], is used in this paper [11]. chastic crossover scheme covers three different crossover
methods; 1-point crossover, 2-point crossover, and 1-point
’ J (@) — fain substring crossover as illustrated in Fig. 2. Each crossover
@)= m (11)  method has its own merits. The 1-point substring crossover can
provide diverse bit structures to search solution space, however
where it easily destroys the string structure that may have partial
HO! fitness value of string using (10), information on the optimal structure.
Smax, fmin ~ Maximum and minimum fitness value in a Although the 1- and 2-point crossovers can not explore so-
generation, lution space as widely as the above crossover, the probability

;@ modified fitness value of string of destroying an already-found partial optimal structure is very
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TABLE |
EXAMPLE OF LOOK-UP TABLE WITH 3 PLANT TYPES FOR3 PLANNING Y EARS

Type 1 Type 2 Type 3
(Upper Limit: 3 Units/Year) (Upper Limit: 3 Units/Year) (Upper Limit: 5 Units/Year)

m Year 1 Year 2 Year 3 Year 1 Year2 Year 3 Year 1 Year 2 Year 3

1 00 00 00 00 00 00 000 000 000

2 o1 01 01 01 01 01 001 001 001

3 10 10 10 10 10 10 010 010 010

4 11 1 11 11 11 11 011 011 o011

5 00 00 00 00 00 00 100 100 100

6 o1 ol 01 01 01 01 101 ST 101

7 10 10 10 10 10 10 000 000 000

8 11 11 11 11 11 11 001 001 001

9 00 00 00 00 00 00 010 010 LB10 -

10 01 01 01 01 01 o1 011 011 o011

11 10 10 10 10 10 10 100 100 100

12 11 11 11 11 11 1 101 101 101

Generated String 1 : 011100101011000101010
parent1 00000000 OCEEEENENE Chidl We have applied the conventional mutation scheme [11]
Parent? gEENENEEN EROO0OO00Qg Chid2  where it performs bit-by-bit for the strings undergone the
‘ 1-point crossover stochastic crossover operator. However, the mutation procedure

) , : ) is not applied to the set of dominant strings to preserve the
Parent 1 DD%DDU%DDDD DD%I..EDDDU Child 1 elitism.
Parent? gEENEEEEE ENOOOEREEE Child2 After genetic operations, we check all strings whether they
2-point crossover satisfy the constraints of (3)—(5) or not. If any string that vio-
rarent 1 OOOQOOOOO OmEpEEOON  chid1 Ia_ltes the constraint_s of_(3)—(5), only the parts of the string that
Parent 2 E!, EREEE X .fDDEfg EEO chid2 Violate the constraints in yedrare generated at random until

i , they satisfy the constraints as described in the AIP scheme.
1-point crossover for substrings

Fig. 2. Three different crossover methods used. IV. CASE STUDIES

The IGA, SGA, tunnel-constrained dynamic programming
(TCDP) employed in WASP, and full dynamic programming
(DP) was implemented using the FORTRAN77 language on an
IBM PC/Pentium (166NMz) computer.

1-point crossover
for substrings

A. Test Systems Description

The IGA, SGA, TCDP and DP methods have been applied
in two test systems: Case | for a power system with 15 existing
power plants, 5 types of candidate options and a 14-year study
period, and Case 2 for a real-scale system with a 24-year study

éaeriod. The planning horizons of 14 and 24 years are divided

low. The stochastic crossover strategy is similar to the proc S? . .
. . : : Info 7 and 12 stages (two-year intervals), respectively. The fore-
of stochastic selection of reproduction candidates from a matin

cgsted peak demand over the study period is given in Table II.

pool. That is, one of the three different crossover methods 1S . :
selected from a biased roulette wheel, where each crossove-Fables llland IV show the technical and economic data of the

method has a roulette wheel slot sized according to its perfgr)S'Stmg plants and candidate plant types for future additions,

mance. The weight for each crossover method has been deter? ectively.

mined.

The second feature lies in the application of elitism [15]. Th@- Parameters for GEP and IGA
roulette wheel selection scheme gives a reproduction opportuThere are several parameters to be pre-determined, which are
nity to a set of recessive members and might not give the selated to the GEP problem and GA-based programs. In this
of dominant strings (i.e., an elite group) a chance to reprodugaper, we use 8.5% as a discount rate, 0.01 as LOLP criteria,
Furthermore, the application of genetic operations changes trel 15% and 60% as the lower and upper bounds for reserve
string structures of the fittest solutions. Thus, the best solutiomgrgin, respectively. The considered lower and upper bounds
in the current generation might not appear in the next genef-capacity mix are 0% and 30% for oil-fired power plants, 0%
ation. To circumvent these problems an elite group is directiynd 40% for LNG-fired, 20% and 60% for coal-fired, and 30%
copied into the next generation. and 60% for nuclear, respectively.

Fig. 3. Roulette wheel for stochastic selection of crossover method.
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TABLE I
FORECASTEDPEAK DEMAND
Stage 0 1 2 3 4 5 6
(Year) | (1996) [ (1998) [ (2000) | (2002) | (2004) | (2006) | (2008)
Peak | 5000 7000 9000 10000 | 12000 } 13000 | 14000
(MW)
Stage - 7 8 9 10 11 12
(Year) (2010) | (2012) | (2014) | (2016) | (2018) | (2020)
Peak - 15000 | 17000 | 18000 | 20000 | 22000 | 24000
MW)
TABLE I
TECHNICAL AND ECONOMIC DATA OF EXISTING PLANTS
Unit Operating| Fixed O&M
GJuI:la r'll"];pe) I;Ij(;ifsf Capacity Iz‘(,z}; Cost Cost
(MW) ($/kWh) | (3/kW-Mon)
Qil #1 (Heavy Oil) 1 200 7.0 0.024 2.25
il #2 (Heavy Oil) 1 200 6.8 0.027 2.25
Oil #3 (Heavy Oil) 1 150 6.0 0.030 2.13
LNG G/T #1 (LNG) 3 50 3.0 0.043 4.52
LNG C/C#1 (LNG) 1 400 10.0 | 0.038 1.63
LNG C/C #2 (LNG) 1 400 10.0 | 0.040 1.63
LNG C/C #3 (LNG) 1 450 11.0 | 0.035 2.00
Coal #1 (Anthracite) 2 250 15.0 | 0.023 6.65
Coal #2 (Bituminous) 1 500 9.0 0.019 2.81
Coal #3 (Bituminous) 1 500 8.5 0.015 2.81
Nuclear #1 (PWR) 1 1,000 9.0 0.005 4.94
Nuclear #2 (PWR) 1 1,000 8.8 0.005 4.63
TABLE IV

TECHNICAL AND ECONOMIC DATA OF CANDIDATE PLANTS

Candidate | Const- | Capa- |FOR|Operating| Fixed | Capital | Life
Type ruction | city |(%)| Cost O&M | Cost | Time
Upper | (MW) ($/kWh) | Cost | (3/kW) | (yrs)
Limit
0il 5 200 | 7.0 0.021 2.20 | 8125 25
LNG C/C 4 450 |10.0] 0.035 0.90 | 500.0 20
Coal (Bitum.){ 3 500 |95 0.014 275 | 10625 25
Nuc. (PWR) 3 1,000 | 9.0 | 0.004 4.60 | 16250 25
Nuc(PHWR) 3 700 | 7.0 | 0.003 5.50 | 1750.0 | 25
TABLE V
PARAMETERS FORIGA | MPLEMENTATION
Parameters Value
¢ Population Size 300
* Maximum Generation 300
o Probabilities of Crossover and Mutation 0.6, 0.01
o Number of Elite Strings 3 (1%)
0.15:0.15:0.70

¢ Weights of 1-point, 2-point, and 1-point

Crossover for Substrings in a Biased Roulette Wheel

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 3, AUGUST 2000

TABLE VI
RESULTS OBTAINED BY EACH CROSSOVERMETHOD

Objective Function in Million Dollars
(Errors against Optimal Solution, %)
Crossover Method PC=0.6 PC=07 PC=0.8
One-point Crossover 5035.53 5013.50 5057.30
(0.59%) (0.15%) (1.02%)
Two-point Crossover 5034.89 5032.98 5034.89
: (0.57%) (0.54%) (0.57%)
One-point Substring 5012.53 5012.46 5010.63
Crossover (0.13%) (0.13%) (0.09%)
DP 5006.19
TABLE VII
RESULTS OBTAINED BY STOCHASTIC CROSSOVERMETHOD
Objective Function in Million Dollars
Weights (Errors against Optimal Solution, %)

PC=0.6 PC=0.7 PC=0.38

0.05:0.05:0.90 5007.40* 5010.63 5007.40

(0.02%) (0.09%) (0.02%)

0.10:0.10: 0.80 5006.19 5010.63 5012.37

(0.00%) (0.09%) (0.12%)

0.15:0.15:0.70 5007.40 5006.19 5006.19

(0.02%) (0.00%) (0.00%)

0.20:0.20: 0.60 5006.19 5006.19 5011.79

(0.00%) (0.00%) (0.11%)

0.25:0.25:0.50 5006.19 5007.40 5018.37

(0.00%) (0.02%) (0.24%)

0.30:0.30:0.40 5006.19 5012.46 5007.40

(0.00%) (0.13%) (0.02%)

* The solution with objective function as 5007.40 million dollars is the
second best solution found by dynamic programming.

To decide the weight of each crossover method in a biased
roulette wheel for stochastic crossover, nine experiments are
performed by changing the probability of crossover from
0.6-0.8, and the results are compared with the optimal solution
obtained by the full DP as shown in Table VI.

Among the three crossover methods, the 1-point substring
crossover showed the best performance in every case. Thus, we
set the 1-point substring crossover with the biggest weight, and
others with an equal smaller weight. To determine the weight
of each crossover method in a biased roulette wheel, 18 sim-
ulations were performed with different weights and crossover
probabilities as shown in Table VII.

Among 18 simulations, we have found the optimal solution
7 times and the second best solution 4 times. Furthermore, the
optimal or the second best solution is found by applying the sto-
chastic crossover technique when the probability of crossover is
0.6. Also, when the weight of 1-point substring crossover is 0.7
and weights for others are 0.15, it always found optimal or the
second best optimal solution. Therefore, we have set the weights
in the stochastic crossover technique as 0.15:0.15:0.70 among
the three crossover methods. This choice has resulted in the ro-
bustness of the stochastic crossover method.

Parameters for IGA are selected through experiments. Espe-Numerical Results

cially, the dominant parameters such as crossover probabilitie§ he developed IGA was applied to two test systems, and com-
and weights for crossover techniques are determined empared with the results of DP, TCDP and SGA. Throughout the
cally from a test system with a 6-year planning horizon wittests, the solution of the conventional DP is regarded as the
other data being the same as Cases 1 and 2.

global optimum and that of TCDP as a local optimum. Both the
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Millon$ TABLE IX
1800 CUMULATIVE NUMBER OF NEWLY INTRODUCED PLANTS IN CASE
1 AND CASE 2 BY IGA3

11700

Type] Oil |LNGC/C| Coal PWR | PHWR
Year | (200MW)|(450MW)|(500MW)| (1000MW) | (700MW)

1998 | 350 | 2(1) | 203) 0(1) 2(0)
2000 | 56) | 3 5(6) 01) 4(1)
2002 | 57 | 3(1) | 56 002) 4(1)
2004 | 8(10) | 7(3) | 6(D 0Q) 4(1)
2006 | 1012) | 103) | 6 0(2) 6(2)
2008 | 10(13) | 103) | 6(9) 0Q2) 6(2)

11100 | 2010 | 1013) | 103) | 6(9) 0Q) 6(4)
1000 , , ‘ , , 2012 |14 11 1 7
1 51 101 154 201 B 2014 117 14 1 7
Generatbn 2016 |19 15 10 I 9
——SGA e GA] — - m - GAD e GAS Opthal] 2018 |19 17 10 3 9
2020 |20 18 12 3 9

. - . 1. The fi ithi i i
Fig. 4. Convergence characteristics of IGA method in Case 1 system. ¢ figures within parenthesis denote the results of IGA3 in Case 1.

TABLE VIII
SUMMARY OF THE BESTRESULTS OBTAINED BY EACH SOLUTION METHOD

— 3000
—— & 2500
Cumulative Discounted Cost (10¢ §) 2 2000
Solution Method Case 1 Case 2 § 1
(14-year Study Period) | (24-year Study Period) £ 1500
DP 11164.2 unknown § 1000
TCDP 11207.7 16746.7 2 500
SGA 11310.5 16765.9 =
IGA1 112383 16759.2 =0
IGA |IGA2 11214.1 16739.2 12345 67 8 9101112
IGA3 11184.2 16644.7

[—e—DP —m—1Ga3|  Stages

global and a local solution can be obtained in Case 1, howele_ar I
. . . : ig. 5. Observed execution time for the number of stages.
only a local solution can be obtained by using TCDP in Case ch

since the “curse of dimensionality” prevents the use of the Colqbwever it is much shorter than the conventional DP. Fig. 5

ventional DP. o
Fig. 4 illustrates the convergence characteristics of varioﬁ?o‘gf tgﬁg:;iﬁiiﬁﬁ:?:;ﬂgg;li(S; ';?n aons? I%Z:rsl thist%@r}_es
GA-based methods in Case 1. It also shows the improvemenﬁo? P ' : yprop
jonal to the number of stages while that of DP exponentially

IGA over SGA. The IGA employing the stochastic crossover reases. In the system with 11 stages, it takes over 9 days for

c
scheme (IGA2) has shown better performance than the Idgp, and requires about 1.2 millions of array memories to obtain

using the artificial initial population scheme (IGA1). By con- X ) L
sidering both schemes simultaneously (IGA3), the performant g optimal solution while it takes only 11 hours by IGA3 to get

's significantly enhanced. t ?I'fr::arrgpg?elémrﬁethod definitely provides quasioptimums in
Table VIII summarizes costs of the best solution obtained prop yp d P

by each solution method. In Case 1, the solution obtained jong-term GEP within a reasonable computation time. Also,

IGAS3 is within 0.18% of the global solution costs while the so- e results of the proposed IGA method are better than those

lutions by SGA and TCDP are within 1.3% and 0.4%, respe8I TCDP employed in the WASP, V.Vh'Ch is viewed as a very
%Nerful and computationally feasible model for a practical

tively. In Case 1 and Case 2, IGA3 has achieved a 0.21% gn X
0.61% improvement of costs over TCDP, respectively. Althoui10 ng-term GEP problem. Slpce a Iong-range C?EP problem
eals with a large amount of investment, a slight improvement

SGA and IGA's have failed in finding the global solution, al . .
IGA's have provided better solution than SGA. Furthermore,y Fhe proposed_ IGA_\_r_nethod can result in substantial cost
solutions of IGA3 are better than that of TCDP in both casesé:,ivIngs for electric utllities.
which implies that it can overcome a local optimal trap in a
practical long-term GEP. Table IX summarizes generation ex-
pansion plans of Case 1 and Case 2 obtained by IGA3. This paper developed an improved genetic algorithm [12]
The execution time of GA-based methods is much longer théGA) for a long-term least-cost generation expansion planning
that of TCDP. That is, IGA3 requires approximately 3.7 an@lGEP) problem. The proposed IGA includes several improve-

6 times of execution time in Case 1 and Case 2, respectivatyents such as the incorporation of an artificial initial population
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scheme, a stochastic crossover technique, elitism and scaled fit5] G. B. Sheble, T. T. Maifeld, K. Brittig, and G. Fahd, “Unit commitment
ness function. by genetic algorithm with penalty methods and a comparison of La-

grangian search and genetic algorithm-economic dispatch algorithm,”

The IGA has b.een SucceSSfu”y. applied to Iong-term GEP Int. Journal of Electric Power & Energy Systemml. 18, no. 6, pp.
problems. It provided better solutions than the conventional  339-346, 1996.
SGA. Moreover, by incorporating all the improvements [16] K. Iba, “Reactive power optimization by genetic algorithmBEEE

Trans. on PWRS/0l. 9, no. 2, pp. 685-692, 1994.

(IGA3)’ it was found to be rOb_USt _in providir_lg quasioptimums[l7] K. Y. Lee, X. Bai, and Y. M. Park, “Optimization method for reactive
within a reasonable computation time and yield better solutions  power planning using a genetic algorithntEZEE Trans. on PWRSol.

compared to the TCDP employed in WASP. Contrary to the DP, 10, no. 4, pp. 1843-1850, 1995.

[18] K.Y.Lee andF. F. Yang, “Optimal reactive power planning using evolu-

computation time of the proposed IGAis “nearly proportlonal tionary algorithms: A comparative study for evolutionary programming,
to the number of stages. evolutionary strategy, genetic algorithm, and linear programming,”

The developed IGA method can simultaneously overcome  |EEE Trans. on PWRSol. 13, no. 1, pp. 101-108, 1998.

R. Dimeo and K. Y. Lee, “Boiler—Turbine control system design using

the “curse of dimensionality” and a local optimum tra inherentﬂg]

; y p p a genetic algorithm,l/EEE Trans. on Energy Conversigvol. 10, no. 4,

in GEP problems. Therefore, the proposed IGA approach can pp. 752-759, 1995.

be used as a practical planning tool for a real-system scalg®l Y:Zhao, R. M. Edwards, and K. . Lee, "Hybrid feedforward and feed-

back controller design for nuclear steam generators over wide range op-

long-term generation expansion planning. eration using genetic algorithm|EEE Trans. on Energy Conversipn

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
&l

(20]

(11]

(12]

(13]

(14]

vol. 12, no. 1, pp. 100-106, 1997.
REFERENCES

S. T. Jenkins and D. S. Joy, “Wien automatic system planning package
(WASP)—AnN electric utility optimal generation expansion planning

computer code,” Oak Ridge National Laboratory, Oak Ridge, TNjong-Bae Parkreceived B.S., M.S., and Ph.D. degrees in electrical engineering
ORNL-4945, 1974. . B . . from Seoul National University in 1987, 1989, and 1998, respectively. For
Electric Power Research Institute (EPRI), “Electric generation expaliggg_1998, he worked as a Researcher of Korea Electric Power Corporation,
sion analysis system (EGEAS),", Palo Alto, CA, EPRI EL-2561, 1982, since 1998 he has been an Assistant Professor of electrical engineering at

S. Nakamura, “A review of electric production simulation and capacnxnyang University, Korea. His research interests are power system planning,
expansion planning programs£hergy Researchvol. 8, pp. 231-240, opfimization, and economic studies.
1984.

P. Masse and R. Gilbrat, “Application of linear programming to invest-
ments in the electric power industrjflanagement Sciengeol. 3, no.

2, pp. 149-166, 1957.

J. A. Bloom, “Long-range generation planning using decompositio

and probabilistic simulation [EEE Trans. on PASvol. 101, no. 4, pp. Qoung-Moon Park was born in Masan, Korea on Aug. 20 1933. He received

797-802. 1982 his B.S., M.S. and Ph.D. degrees from Seoul National University in 1956, 1959
Y. M Par'k K Y Lee, and L. T. O. Youn, “New analytical approachand 1971, respectively. For 1959-1998, he was with Seoul National University
N S N Lo : : .. where he is currently a Professor Emeritus of electrical engineering. From 1998,
for Iong—ter_m generation expansion planning based maximum prlnuq‘il\% has also been ar): Adjunct Professor of electrical engingeering a?tthe Pennsyl-
and Gaussian distribution functionFEE Trans. on PASvol. 104, pp. h - . g : .
vania State University, U.S.A. His interests include power systems operation

390-397, 1985. dol . 1t svst d artificial inteli lication t
A. K. David and R. Zhao, “Integrating expert systems with dynamitg:msp anning, expert systems and artificial intelligence application to power sys-

programming in generation expansion planningEE Trans. on PWRS
vol. 4, no. 3, pp. 1095-1101, 1989.

—, “An expert system with fuzzy sets for optimal plannin¢EEE
Trans. on PWRSol. 6, no. 1, pp. 59-65, 1991.

Y. Fukuyama and H. Chiang, “A parallel genetic algorithm for gener- . . . .
ation expansion planning/EEE Trans. on PWRSol. 11, no. 2, pp. Jong-Ryul Won received B.S., M.S., and Ph.D. degrees in electrical engi-
955-961, 1996. neering from Seoul National University in 1993, 1995, and 1998, respectively.
Y. M. Park, J. B. Park, and J. R. Won, “A genetic algorithms approachince 1998, he has been a Researcher of Korea Electric Power Research
for generation expansion planning optimization,”Rroc. of the IFAC Institute. His research interests are power system planning, and optimization.
Symposium on Power Systems and Power Plant Coftesgamon, UK,

1996, pp. 257-262.

D. E. GoldbergGenetic Algorithms in Search, Optimization and Ma-

chine Learning MA: Addison-Wesley Publishing Company Inc., 1989.

D. C. Walters and G. B. Sheble, “Genetic algorithm solution of economiKwang Y. Lee received B.S. degree in electrical engineering from Seoul Na-
dispatch with valve point loading)/EEE Trans. on PWRSol. 8, no. 3, tional University, Korea, in 1964, M.S. degree in electrical engineering from
pp. 1325-1332, 1993. North Dakota State, Fargo in 1968, and Ph.D. degree in Systems Science from
P. H. Chen and H. C. Chang, “Large-scale economic dispatch by genddichigan State, East Lansing in 1991. He has been with Michigan State, Oregon
algorithm,”[EEE Trans. on PWR%ol. 10, no. 4, pp. 1919-1926, 1995. State, Univ. of Houston, and the Pennsylvania State University, where he is a
D. Dasgupta and D. R. McGregor, “Thermal unit commitment using gdrofessor of electrical engineering and Director of Power Systems Control Lab-
netic algorithms,'IEE Proc.—Gener. Transm. Distribvol. 141, no. 5, oratory. His interests include control and intelligent systems and their applica-
pp. 459-465, 1994. tions to power plant and power system control, operation and planning.



