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An Improved Genetic Algorithm for Generation
Expansion Planning

Jong-Bae Park, Young-Moon Park, Jong-Ryul Won, and Kwang Y. Lee

Abstract—This paper presents a development of an improved
genetic algorithm (IGA) and its application to a least-cost genera-
tion expansion planning (GEP) problem. Least-cost GEP problem
is concerned with a highly constrained nonlinear dynamic op-
timization problem that can only be fully solved by complete
enumeration, a process which is computationally impossible in
a real-world GEP problem. In this paper, an improved genetic
algorithm incorporating a stochastic crossover technique and
an artificial initial population scheme is developed to provide
a faster search mechanism. The main advantage of the IGA
approach is that the “curse of dimensionality” and a local optimal
trap inherent in mathematical programming methods can be
simultaneously overcome. The IGA approach is applied to two test
systems, one with 15 existing power plants, 5 types of candidate
plants and a 14-year planning period, and the other, a practical
long-term system with a 24-year planning period.

Index Terms—Generation expansion planning, genetic algo-
rithm, global optimization, improved genetic algorithm.

I. INTRODUCTION

GENERATION expansion planning (GEP) is one of the
most important decision-making activities in electric util-

ities. Least-cost GEP is to determine the minimum-cost capacity
addition plan (i.e., the type and number of candidate plants) that
meets forecasted demand within a prespecified reliability crite-
rion over a planning horizon.

A least-cost GEP problem is a highly constrained nonlinear
discrete dynamic optimization problem that can only be fully
solved by complete enumeration in its nature [1]–[3]. Therefore,
every possible combination of candidate options over a planning
horizon must be examined to get the optimal plan, which leads
to the computational explosion in a real-world GEP problem.

To solve this complicated problem, a number of salient
methods have been successfully applied during the past
decades. Masse and Gilbrat [4] applied a linear programming
approach that necessitates the linear approximation of an objec-
tive function and constraints. Bloom [5] applied a mathematical
programming technique using a decomposition method, and
solved it in a continuous space. Parket al. [6] applied the
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Pontryagin’s maximum principle whose solution also lies in a
continuous space. Although the above-mentioned mathematical
programming methods have their own advantages, they possess
one or both of the following drawbacks in solving a GEP
problem. That is, they treat decision variables in a continuous
space. And there is no guarantee to get the global optimum
since the problem is not mathematically convex. Dynamic
programming (DP) based framework is one of the most widely
used algorithms in GEP [1]–[3], [7], [8]. However, so-called
“the curse of dimensionality” has interrupted direct application
of the conventional full DP in practical GEP problems. For
this reason, WASP [1] and EGEAS [2] use a heuristic tun-
neling technique in the DP optimization routine where users
prespecify states and successively modify tunnels to arrive at
a local optimum. David and Zhao developed a heuristic-based
DP [7] and applied the fuzzy set theory [8] to reduce the
number of states. Recently, Fukuyama and Chiang [9] and Park
et al. [10] applied genetic algorithm (GA) to solve sample GEP
problems, and showed promising results. However, an efficient
method for a practical GEP problem that can overcome a local
optimal trap and the dimensionality problem simultaneously
has not been developed yet.

GA is a search algorithm based on the hypothesis of nat-
ural selections and natural genetics [11]. Recently, a global op-
timization technique using GA has been successfully applied
to various areas of power system such as economic dispatch
[12], [13], unit commitment [14], [15], reactive power planning
[16]–[18], and power plant control [19], [20]. GA-based ap-
proaches for least-cost GEP have several advantages. Naturally,
they can not only treat the discrete variables but also overcome
the dimensionality problem. In addition, they have the capability
to search for the global optimum or quasioptimums within a rea-
sonable computation time. However, there exist some structural
problems in the conventional GA, such as premature conver-
gence and duplications among strings in a population as gener-
ation progresses [11].

In this paper, an improved genetic algorithm (IGA), which
can overcome the aforementioned problems of the conventional
GA to some extents, is developed. The proposed IGA incorpo-
rates the following two main features. First, an artificial creation
scheme for an initial population is devised, which also takes
the random creation scheme of the conventional GA into ac-
count. Second, a stochastic crossover strategy is developed. In
this scheme, one of the three different crossover methods is ran-
domly selected from a biased roulette wheel where the weight of
each crossover method is determined through pre-performed ex-
periments. The stochastic crossover scheme is similar to the sto-
chastic selection of reproduction candidates from a mating pool.
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The results of the IGA are compared with those of the conven-
tional simple genetic algorithm, the full DP, and the tunnel-con-
strained DP employed in WASP.

II. FORMULATION OF THE LEAST-COSTGEP PROBLEM

Mathematically, solving a least-cost GEP problem is equiva-
lent to finding a set of optimal decision vectors over a planning
horizon that minimizes an objective function under several con-
straints. The GEP problem to be considered is formulated as
follows [6]:

(1)

(2)

(3)

(4)

and

(5)

(6)

where
: number of periods (years) in a planning

horizon,
: number of fuel types,
: index set for th fuel type plant,
: cumulative capacity [MW] vector of plant

types in year ,
: cumulative capacity [MW] of th plant type

in year ,
: capacity addition [MW] vector by plant types

in year ,
: maximum construction capacity [MW] vector

by plant types in year,
: capacity addition [MW] of th plant in year ,

: loss of load probability (LOLP) with , in
year ,

: reserve margin with , in year ,
: reliability criterion expressed in LOLP,
, : upper and lower bounds of reserve margin,

, : upper and lower bounds ofth fuel type in
year ,

: discounted construction costs [$] associated
with capacity addition in year ,

: discounted fuel and O&M costs [$] associated
with capacity , in year ,

: discounted salvage value [$] associated with
capacity addition in year .

The objective function is the sum of tripartite discounted costs
over a planning horizon. It is composed of discounted invest-
ment costs, expected fuel and O&M costs and salvage value.
To consider investments with longer lifetimes than a planning
horizon, the linear depreciation option is utilized [1]. In this
paper, five types of constraints are considered. Equation (2) im-
plies state equation for dynamic planning problem [6]. Equa-
tions (3) and (4) are related with the LOLP reliability criteria
and the reserve margin bands, respectively. The capacity mixes
by fuel types are considered in (5). Plant types give another
physical constraint in (6), which reflects the yearly construction
capabilities.

Although the state vector, , and the decision vector, ,
have dimensions of MW, we can easily convert those into vec-
tors which have information on the number of units in each plant
type. This mapping strategy is very useful for GA implementa-
tion of a GEP problem such as encoding and treatment of in-
equality (6), and illustrated in the following (1) equations:

(7)

(8)

where
: number of plant types including both existing and can-

didate plants,
: cumulative number of units by plant types in year,
: addition number of units by plant types in year,
: th plant type’s cumulative number of units in year,
: th plant type’s addition number of units in year.

III. I MPROVED GA FOR THELEAST-COST GEP

A. Overview of Genetic Algorithm

Basically, genetic algorithm is a search mechanism based on
the hypothesis of natural selection [11]. GA is an artificial opti-
mization scheme that emulates the hypothetical adaptive nature
of natural genetics. GA provides solutions by generating a set of
chromosomes referred to as a generation. Each string (chromo-
some) has its own fitness measure that reflects how well a crea-
ture can survive under surrounding environments. The new gen-
eration of strings is provided through three major genetic oper-
ations—reproduction, crossover and mutation, which provide a
powerful global search mechanism. Reproduction is a process in
which individual strings are copied into a mating pool according
to their fitness values. Crossover, the most important genetic op-
erator, is a structured recombination operation. In the classical
one-point crossover, a random position in a string is chosen and
all characters to the right of this position are swapped. Mutation,
the secondary operator in GA, is an occasional random alter-
ation of the value of a string position. Variations of the simple
GA for power system applications can be found in the Refer-
ences [9], [10], [12]–[20]. The improvements on the conven-
tional GA will be described in the subsequent sections.
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Fig. 1. A substring structure.

B. String Structure

Since it is convenient to use integer values for GA imple-
mentation of a GEP problem, the reordered structure of (8) by
plant types covering a planning horizon is used for encoding of
a string as shown in (9). Here, each element of a string [i.e.,

for ] corresponds to a
substring and its structure is depicted in Fig. 1.

(9)

C. Fitness Function

The objective function or cost of a candidate plan is calcu-
lated through the probabilistic production costing and the direct
investment costs calculation [1], [2]. The fitness value of a string
can be evaluated using the following equation [11], [19]:

(10)

where is constant and is objective function of (1).
However, this simple mapping occasionally brings about a

premature convergence and duplications among strings in a pop-
ulation, since strings with higher fitness values dominate the oc-
cupation of a roulette wheel.

To ameliorate these problems, the following modified fitness
function, which normalizes the fitness value of strings into real
numbers within [0, 1], is used in this paper [11].

(11)

where
fitness value of string using (10),

, maximum and minimum fitness value in a
generation,
modified fitness value of string.

D. Creation of an Artificial Initial Population

It is important to create an initial population of strings spread
out throughout the whole solution space, especially in a large-
scale problem. One alternative method could be to increase the
population size, which yields a high computational burden. This
paper suggests a new artificial initial population (AIP) scheme,
which also takes the random creation scheme of the conven-
tional GA into account. The procedures are illustrated in the fol-
lowing and in Table I:

Step 1. Generate all possible binary seeds of each plant type
considering (6). For example, ifth plant type has
an upper limit of 3 units per year, then generate 4
possible binary seeds (i.e., 00,10, 10, 11).

Step 2. Find the least common multiple (LCM) from the
numbers of the binary seeds of all types, and fill
binary seeds in a look-up table for all plant types
and planning years. For example, if three plant types
have upper limits of 3, 3 and 5 units per year, respec-
tively, then the numbers of binary seeds are 4, 4, and
6, and becomes 12.

Step 3. Select an integer within [1, ] at random for each
element of a string in (9). Fill the string with the
corresponding binary digits, and delete it from the
look-up table. Repeat until different strings are
generated.

Step 4. Check the constraints of (3)–(5). If a string satis-
fies these constraints for all years, then it becomes
a member of an initial population. Otherwise, the
only parts of the string that violate the constraints
in year are generated at random until they satisfy
the constraints. Go to step 3times for less
than , where is the number of strings in a pop-
ulation and is an arbitrary positive integer.

Step 5. The remaining – strings are created using uni-
form random variables with binary number .
Go to step 4 to check the constraints and regenerate
them if necessary. This process is repeated until all
strings, which satisfy the constraints, are generated.

This AIP is based on both artificial and random selection
schemes, which allows all possible string structures can be in-
cluded in an initial population.

E. Stochastic Crossover, Elitism, and Mutation

Most of GA works are based on the Goldberg’s simple
genetic algorithm (SGA) framework [11]. This paper proposes
two different schemes for genetic operation: a stochastic
crossover technique and the application of elitism. The sto-
chastic crossover scheme covers three different crossover
methods; 1-point crossover, 2-point crossover, and 1-point
substring crossover as illustrated in Fig. 2. Each crossover
method has its own merits. The 1-point substring crossover can
provide diverse bit structures to search solution space, however
it easily destroys the string structure that may have partial
information on the optimal structure.

Although the 1- and 2-point crossovers can not explore so-
lution space as widely as the above crossover, the probability
of destroying an already-found partial optimal structure is very
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TABLE I
EXAMPLE OF LOOK-UP TABLE WITH 3 PLANT TYPES FOR3 PLANNING YEARS

Fig. 2. Three different crossover methods used.

Fig. 3. Roulette wheel for stochastic selection of crossover method.

low. The stochastic crossover strategy is similar to the process
of stochastic selection of reproduction candidates from a mating
pool. That is, one of the three different crossover methods is
selected from a biased roulette wheel, where each crossover
method has a roulette wheel slot sized according to its perfor-
mance. The weight for each crossover method has been deter-
mined.

The second feature lies in the application of elitism [15]. The
roulette wheel selection scheme gives a reproduction opportu-
nity to a set of recessive members and might not give the set
of dominant strings (i.e., an elite group) a chance to reproduce.
Furthermore, the application of genetic operations changes the
string structures of the fittest solutions. Thus, the best solutions
in the current generation might not appear in the next gener-
ation. To circumvent these problems an elite group is directly
copied into the next generation.

We have applied the conventional mutation scheme [11]
where it performs bit-by-bit for the strings undergone the
stochastic crossover operator. However, the mutation procedure
is not applied to the set of dominant strings to preserve the
elitism.

After genetic operations, we check all strings whether they
satisfy the constraints of (3)–(5) or not. If any string that vio-
lates the constraints of (3)–(5), only the parts of the string that
violate the constraints in yearare generated at random until
they satisfy the constraints as described in the AIP scheme.

IV. CASE STUDIES

The IGA, SGA, tunnel-constrained dynamic programming
(TCDP) employed in WASP, and full dynamic programming
(DP) was implemented using the FORTRAN77 language on an
IBM PC/Pentium (166NMz) computer.

A. Test Systems Description

The IGA, SGA, TCDP and DP methods have been applied
in two test systems: Case I for a power system with 15 existing
power plants, 5 types of candidate options and a 14-year study
period, and Case 2 for a real-scale system with a 24-year study
period. The planning horizons of 14 and 24 years are divided
into 7 and 12 stages (two-year intervals), respectively. The fore-
casted peak demand over the study period is given in Table II.

Tables III and IV show the technical and economic data of the
existing plants and candidate plant types for future additions,
respectively.

B. Parameters for GEP and IGA

There are several parameters to be pre-determined, which are
related to the GEP problem and GA-based programs. In this
paper, we use 8.5% as a discount rate, 0.01 as LOLP criteria,
and 15% and 60% as the lower and upper bounds for reserve
margin, respectively. The considered lower and upper bounds
of capacity mix are 0% and 30% for oil-fired power plants, 0%
and 40% for LNG-fired, 20% and 60% for coal-fired, and 30%
and 60% for nuclear, respectively.
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TABLE II
FORECASTEDPEAK DEMAND

TABLE III
TECHNICAL AND ECONOMIC DATA OF EXISTING PLANTS

TABLE IV
TECHNICAL AND ECONOMIC DATA OF CANDIDATE PLANTS

TABLE V
PARAMETERS FORIGA IMPLEMENTATION

Parameters for IGA are selected through experiments. Espe-
cially, the dominant parameters such as crossover probabilities
and weights for crossover techniques are determined empiri-
cally from a test system with a 6-year planning horizon with
other data being the same as Cases 1 and 2.

TABLE VI
RESULTSOBTAINED BY EACH CROSSOVERMETHOD

TABLE VII
RESULTSOBTAINED BY STOCHASTIC CROSSOVERMETHOD

To decide the weight of each crossover method in a biased
roulette wheel for stochastic crossover, nine experiments are
performed by changing the probability of crossover from
0.6–0.8, and the results are compared with the optimal solution
obtained by the full DP as shown in Table VI.

Among the three crossover methods, the 1-point substring
crossover showed the best performance in every case. Thus, we
set the 1-point substring crossover with the biggest weight, and
others with an equal smaller weight. To determine the weight
of each crossover method in a biased roulette wheel, 18 sim-
ulations were performed with different weights and crossover
probabilities as shown in Table VII.

Among 18 simulations, we have found the optimal solution
7 times and the second best solution 4 times. Furthermore, the
optimal or the second best solution is found by applying the sto-
chastic crossover technique when the probability of crossover is
0.6. Also, when the weight of 1-point substring crossover is 0.7
and weights for others are 0.15, it always found optimal or the
second best optimal solution. Therefore, we have set the weights
in the stochastic crossover technique as 0.15 : 0.15 : 0.70 among
the three crossover methods. This choice has resulted in the ro-
bustness of the stochastic crossover method.

C. Numerical Results

The developed IGA was applied to two test systems, and com-
pared with the results of DP, TCDP and SGA. Throughout the
tests, the solution of the conventional DP is regarded as the
global optimum and that of TCDP as a local optimum. Both the
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Fig. 4. Convergence characteristics of IGA method in Case 1 system.

TABLE VIII
SUMMARY OF THE BESTRESULTSOBTAINED BY EACH SOLUTION METHOD

global and a local solution can be obtained in Case 1; however,
only a local solution can be obtained by using TCDP in Case 2
since the “curse of dimensionality” prevents the use of the con-
ventional DP.

Fig. 4 illustrates the convergence characteristics of various
GA-based methods in Case 1. It also shows the improvement of
IGA over SGA. The IGA employing the stochastic crossover
scheme (IGA2) has shown better performance than the IGA
using the artificial initial population scheme (IGA1). By con-
sidering both schemes simultaneously (IGA3), the performance
is significantly enhanced.

Table VIII summarizes costs of the best solution obtained
by each solution method. In Case 1, the solution obtained by
IGA3 is within 0.18% of the global solution costs while the so-
lutions by SGA and TCDP are within 1.3% and 0.4%, respec-
tively. In Case 1 and Case 2, IGA3 has achieved a 0.21% and
0.61% improvement of costs over TCDP, respectively. Although
SGA and IGA’s have failed in finding the global solution, all
IGA’s have provided better solution than SGA. Furthermore,
solutions of IGA3 are better than that of TCDP in both cases,
which implies that it can overcome a local optimal trap in a
practical long-term GEP. Table IX summarizes generation ex-
pansion plans of Case 1 and Case 2 obtained by IGA3.

The execution time of GA-based methods is much longer than
that of TCDP. That is, IGA3 requires approximately 3.7 and
6 times of execution time in Case 1 and Case 2, respectively.

TABLE IX
CUMULATIVE NUMBER OF NEWLY INTRODUCED PLANTS IN CASE

1 AND CASE 2 BY IGA3

Fig. 5. Observed execution time for the number of stages.

However, it is much shorter than the conventional DP. Fig. 5
shows the observed execution time of IGA3 and DP as the stages
are expanded. Execution time of IGA3 is almost linearly propor-
tional to the number of stages while that of DP exponentially
increases. In the system with 11 stages, it takes over 9 days for
DP, and requires about 1.2 millions of array memories to obtain
the optimal solution while it takes only 11 hours by IGA3 to get
the near optimum.

The proposed method definitely provides quasioptimums in
a long-term GEP within a reasonable computation time. Also,
the results of the proposed IGA method are better than those
of TCDP employed in the WASP, which is viewed as a very
powerful and computationally feasible model for a practical
long-term GEP problem. Since a long-range GEP problem
deals with a large amount of investment, a slight improvement
by the proposed IGA method can result in substantial cost
savings for electric utilities.

V. CONCLUSIONS

This paper developed an improved genetic algorithm [12]
(IGA) for a long-term least-cost generation expansion planning
(GEP) problem. The proposed IGA includes several improve-
ments such as the incorporation of an artificial initial population
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scheme, a stochastic crossover technique, elitism and scaled fit-
ness function.

The IGA has been successfully applied to long-term GEP
problems. It provided better solutions than the conventional
SGA. Moreover, by incorporating all the improvements
(IGA3), it was found to be robust in providing quasioptimums
within a reasonable computation time and yield better solutions
compared to the TCDP employed in WASP. Contrary to the DP,
computation time of the proposed IGA is linearly proportional
to the number of stages.

The developed IGA method can simultaneously overcome
the “curse of dimensionality” and a local optimum trap inherent
in GEP problems. Therefore, the proposed IGA approach can
be used as a practical planning tool for a real-system scale
long-term generation expansion planning.
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